
Aufgabe 1. Hesse Normal Forms.

(a) It is readily apparent that ~v =

✓
5
2

◆
is orthogonal to

✓
�2
5

◆
. Scalar multiplication gives us

h
✓
5
2

◆
,

✓
5
2

◆
i = 25 + 4 = 29,

and so the normalized normal vector is
1p
29

✓
5
2

◆
. The point

✓
3
4

◆
lies on the line, and we find

that

h
✓
3
4

◆
,

✓
5
2

◆
i = 15 + 8 = 23.

Hence the Hesse Normal Form is given by
⇢✓

x
y

◆
2 R2

���� h
✓
x
y

◆
,

1p
29

✓
5
2

◆
i = 23p

29

�
.

Note to markers: Give the students 1 point for finding the normal vector, 1 point for normal-

izing it correctly, 1 point for getting the scalar product with

✓
3
4

◆
right, and 1 point for writing

down the correct Hesse Normal Form, i.e. 1 + 1 + 1 + 1 = 4 points all in all.

(b) First, the students need to find a vector orthogonal to both
�
2 �1 1

�T
and

�
2 3 2

�T
.

If one does it by means of the cross product, one finds
������

~x ~y ~z
2 �1 1
2 3 2

������
= ((�1) · 2� 1 · 3)~x� (2 · 2� 1 · 2)~y + (2 · 3� (�1 · 2))~z = �5~x� 2~y + 8~z.

One may also solve the system of simultaneous equations

2x� y + z = 0,

2x+ 3y + 2z = 0.

Subtracting the first row from the second, we have

2x� y + z = 0,

4y + z = 0.

From the second row, letting y = t, we find z = �4t. In the first row, we then find 2x = 5t, or
x = �5

2 t. From this we may read out that a normal vector exists in the form
�
5 2 �8

�
.

Next, we normalize this,

h

0

@
5
2
�8

1

A ,

0

@
5
2
�8

1

Ai = 25 + 4 + 64 = 93,

and so the normalized normal vector is
1p
93

0

@
5
2
�8

1

A. The point

0

@
1
0
�2

1

A lies on the line, and we

find that

h

0

@
1
0
�2

1

A ,

0

@
5
2
�8

1

Ai = 5 + 16 = 21.

1
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Hence the Hesse Normal Form is given by
8
<

:

0

@
x
y
z

1

A 2 R3

����� h

0

@
x
y
z

1

A ,
1p
93

0

@
5
2
�8

1

Ai = 21p
93

9
=

; .

Note to markers: Give the students 3 points for finding the normal vector, 1 point for nor-

malizing it correctly, 1 point for getting the scalar product with

0

@
1
0
�2

1

A right, and 1 point for

writing down the correct Hesse Normal Form, i.e. 3 + 1 + 1 + 1 = 6 points all in all.



3

Aufgabe 2. The Euclidean Algorithm.

(a) Two elements a, b in an integral domain are said to be coprime if the unit element is a
greatest common divisor of the two.

Note to markers: Give the students 1 point for getting this definition right.

(b) Personally, I would do this directly by prime factorization. 94 = 2 · 47, and 47 is easily seen
to be a prime number by the sieve of Eratosthenes. 314 = 2 · 157.

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

. . .

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

The sieve of Eratosthenes gives 157 to be a prime number as well, but it isn’t strictly speaking
necessary to perform that algorithm again, since one only needs to check that neither 2 nor 47
is a divisor of 157. Hence it’s clear that the greatest common divisor of 94 and 314 is 2.

More conventional however is the use of Euclid’s algorithm1. We obtain

314 = 3⇥ 94 + 32,

94 = 2⇥ 32 + 30,

32 = 1⇥ 30 + 2,

30 = 15⇥ 2.

1Some people are so basic in their choice of ancient Greek mathematicians.



4

Since 1 is not a greatest common divisor of 94 and 314, they are not coprime.

Note to markers: Give the students 2 points for determining that the greatest common divisor

is 2, 1 point for noting that this means that 314 and 94 are not coprime. All in all, 2 + 1 = 3
points.

(c) This one will of course be a lot easier if you proceeded in the preceding subquestion with
Euclid’s algorithm. We find

2 = 32� 30

= 32� (94� 2⇥ 32)

= 3⇥ 32� 94

= 3⇥ (314� 3⇥ 94)� 94

= 3⇥ 314� 10⇥ 94,

giving us p = 3 and q = �10.

Note to markers: Give the students 2 points for completing this subquestion without any

calculation error.

(d) Cometh the dreaded polynomial long division subquestion. This time it’s surprisingly easy,
though! We find

X4 + 7X3 + 6X2 +X + 6 = X(X3 + 7X2 + 6X) + (X + 6)

and
X2 +X

X + 6
�

X3 + 7X2 + 6X
�X3 � 6X2

X2 + 6X
�X2 � 6X

0

in other words,
X3 + 7X2 + 6X = (X2 +X)(X + 6),

meaning that they have a greatest common divisor in (X + 6), and thus are not coprime.

Note to markers: Give the students 2 points for completing the polynomial long division

without error, and an additional point for remembering to jot down that this means that the two

polynomials are not coprime. All in all, 2 + 1 = 3 points.

(e) We can easily rearrange

X4 + 7X3 + 6X2 +X + 6 = X(X3 + 7X2 + 6X) + (X + 6)

into
X4 + 7X3 + 6X2 +X + 6�X(X3 + 7X2 + 6X) = (X + 6),

giving us P = 1 and Q = �X.

Note to markers: Give the students 1 point for getting that right.
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Aufgabe 3. Jordan Normal Forms, Part I.

(a) A matrix is diagonalizable if and only if its minimal polynomial splits and the roots thereof
are all of multiplicity one.

Note to markers: Give the students 1.5 points for giving the correct definition.

(b) For the first matrix, we have

�A(�) =

����
�1� � 3
�4 1� �

���� = (�+ 1)(�� 1) + 12 = �2 � 1 + 12 = �+ 11,

and since this polynomial doesn’t split over R, we may conclude that µA(�) = �+ 11.

Note to markers: Give the students 0.5 points for finding the correct characteristic polyno-

mial. Give the students 0.5 points for finding the correct minimal polynomial. Give the students

0.5 points for providing the right reasoning. All in all, 0.5 + 0.5 + 0.5 = 1.5 points.

For the second matrix, we have

�B(�) =

����
1� � 5
0 3� �

���� = (1� �)(3� �),

and we may then easily read out that µB(�) = �B(�).

Note to markers: Give the students 0.5 points for finding the correct characteristic polyno-

mial. Give the students 0.5 points for finding the correct minimal polynomial. Give the students

0.5 points for providing the right reasoning. All in all, 0.5 + 0.5 + 0.5 = 1.5 points.

For the third matrix, we have

�C(�) =

������

3� � 0 1
0 3� � 2
0 0 3� �

������
= (3� �)3.

The question then is, what is the minimal polynomial, µC(�)? We have three options. (�� 3),
(�� 3)2, and (�� 3)3. It is immediately apparent that C � 3 6= 0, ruling out the first option.
However,

(C � 3 )2 =

0

@

0

@
3 0 1
0 3 2
0 0 3

1

A�

0

@
3 0 0
0 3 0
0 0 3

1

A

1

A
2

=

0

@
0 0 1
0 0 2
0 0 0

1

A
2

=

0

@
0 0 0
0 0 0
0 0 0

1

A ,

and hence µC(�) = (�� 3)2.

Note to markers: Give the students 0.5 points for finding the correct characteristic polyno-

mial. Give the students 1 points for finding the correct minimal polynomial. Give the students

1 points for providing the right reasoning. All in all, 0.5 + 1 + 1 = 2.5 points.

(c) It is possible to put a matrix in Jordan normal form if and only if its characteristic polynomial
decomposes into linear factors (in the polynomial ring of the field over which we are working).
Hence, A cannot be put in Jordan normal form, but B and C can.

The multiplicity of a given root in the minimal polynomial of a matrix gives the size of the
largest Jordan block of that root in the Jordan normal form of said matrix. Hence the Jordan
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normal forms of B and C respectively are

✓
1 0
0 3

◆
and

0

@
3 0 0
0 3 1
0 0 3

1

A .

Note to markers: In the case of matrix A, give the students 0.5 points for stating that the

Jordan normal form doesn’t exist, and 0.5 points for providing the correct reasoning for why it

doesn’t exist. In the case of matrix B, give the students 0.5 points for stating that the Jordan

normal form exists, and 0.5 points for giving it. In the case of matrix C, give the students 0.5

points for stating that the Jordan normal form exists, and 0.5 points for giving it. All in all,

(0.5 + 0.5) + (0.5 + 0.5) + (0.5 + 0.5) = 3 points.
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Aufgabe 4. Jordan Normal Forms, Part II.

(a) We find

�A(�) =

������

�1� � 2 3
�4 5� � 4
�2 1 4� �

������

= (�1� �)((5� �)(4� �)� 4)� 2(�4(4� �)� (�2) · 4) + 3(�4� (�2)(5� �))

= (��3 + 8�2 � 7�� 16) + (16� 8�) + (18� 6�)

= ��3 + 8�2 � 21�+ 18.

We find �A(2) = �8 + 32� 42 + 18 = 0, and hence (�� 8) is a factor of �A. Polynomial long
division gives

�X2 + 6X � 9

X � 2
�
�X3 + 8X2 � 21X + 18
X3 � 2X2

6X2 � 21X
� 6X2 + 12X

� 9X + 18
9X � 18

0

i.e. �A(�) = �(��2)(�2�6�+9). The second factor can easily be factorized once again, giving
us �A(�) = �(��2)(��3)2. Hence the minimal polynomial may be either µA(�) = (��2)(��3)
or µA(�) = (�� 2)(�� 3)2. We find that
0

@

0

@
�1 2 3
�4 5 4
�2 1 4

1

A� 2

0

@
1 0 0
0 1 0
0 0 1

1

A

1

A

0

@

0

@
�1 2 3
�4 5 4
�2 1 4

1

A� 3

0

@
1 0 0
0 1 0
0 0 1

1

A

1

A =

0

@
�3 2 3
�4 3 4
�2 1 2

1

A

0

@
�4 2 3
�4 2 4
�2 1 1

1

A .

Already for the first element in this 3 ⇥ 3 matrix, we obtain 12 � 8 � 6 = �2 6= 0, and hence
µA(�) = (�� 2)(�� 3)2.

Note to markers: Give the students 1 point for finding the characteristic polynomial �A(�).
Give them 1 point for giving the correct factorization �A(�) = �(� � 2)(� � 3)2. Give them

1 point for correctly deducing (with full reasoning!) that µA(�) = (� � 2)(� � 3)2. All in all,

1 + 1 + 1 = 3 points.

(b) This was all done as part of subquestion (a). The eigenvalues are � = 2 and � = 3.

Note to markers: Give the students 0.5 points for writing that down.

(c) Remember the definition,

Hau(A, a) := {~v 2 V | (A� a )n = 0 for some n 2 N},

and that the dimensionality of Hau(A, a) equals the multiplicity of a as a root of the character-
istic polynomial of A.

We have 0

@
�1 2 3
�4 5 4
�2 1 4

1

A

0

@
x
y
z

1

A =

0

@
�x+ 2y + 3z
�4x+ 5y + 4z
�2x+ y + 4z

1

A = �

0

@
x
y
z

1

A ,
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giving us a system of simultaneous equations

�(1 + �)x+ 2y + 3z = 0,

�4x+ (5� �)y + 4z = 0,

�2x+ y + (4� �)z = 0.

In the case of � = 2, this reads

�3x+ 2y + 3z = 0,

�4x+ 3y + 4z = 0,

�2x+ y + 2z = 0.

Subtracting the third row twice from the second row gives us �y = 0, which sorts out the value
of that parameter. The second row then reads �2x+2z = 0, from which we may conclude that
if x = t, then z = t as well. Hence we have obtained the eigenvector associated with � = 2 in

the form of ~v =
�
1 0 1

�T
. Since the root � = 2 only appears with multiplicity one in the

characteristic polynomial, it follows that Hau(A; 2) = h~vi.

In the case of � = 3, since the factor (� � 3) appears with multiplicity 2 in the minimal
polynomial, in the Jordan normal form, there is a 2⇥ 2 block associated with that eigenvalue,
and hence we conclude that there may only exist one eigenvector associated to it. Thus rather
than to go looking for the eigenvector, it is quickest and simplest to directly look for a basis for
ker((A� 3 )2).

Since 0

@

0

@
�1 2 3
�4 5 4
�2 1 4

1

A� 3

0

@
1 0 0
0 1 0
0 0 1

1

A

1

A
2

=

0

@
�4 2 3
�4 2 4
�2 1 1

1

A
2

=

0

@
2 �1 �1
0 0 0
2 �1 �1

1

A ,

we must simply find a basis for the solution space to 2x � y � z = 0. It is easy to read

out (for instance) that a basis is given by ~w =
�
1 2 0

�T
and ~u =

�
0 1 �1

�T
. Hence,

Hau(A; 3) = h~w, ~ui (or equivalent).

Note to markers: Give the students 1.5 point for finding Hau(A; 2). Give them 1.5 points for

finding Hau(A; 3). All in all, 1.5 + 1.5 = 3 points.

(d) We have our first basis vector in the eigenvector associated with � = 2, noted above.

For the next two, we need to find ker(A� 3 ) (i.e. the eigenvector associated to � = 3) and a
vector ~b 2 ker((A� 3 )2) such that

ker((A� 3 )2) = h~bi � ker(A� 3 ). (4d.1)

Of course, if ~c 2 ker((A� 3 )2), then it follows that (A� 3 )~c 2 ker(A� 3 ), so we just need

to find ~c 2 ker((A� 3 )2) such that (A� 3 )~c 6= 0. If we try with ~c = ~w =
�
1 2 0

�T
, we find

0

@
�4 2 3
�4 2 4
�2 1 1

1

A

0

@
1
2
0

1

A =

0

@
0
0
0

1

A ,

so that doesn’t work. However, if we instead try ~c = ~u =
�
0 1 �1

�T
, we find

0

@
�4 2 3
�4 2 4
�2 1 1

1

A

0

@
0
1
�1

1

A =

0

@
�1
�2
0

1

A ,
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Hence, the Jordan normal basis is given by
8
<

:

0

@
1
0
1

1

A , (A+ )~u, ~u

9
=

; =

8
<

:

0

@
1
0
1

1

A ,

0

@
�1
�2
0

1

A ,

0

@
0
1
�1

1

A

9
=

; . (4d.2)

Note to markers: Give the students 1 point for writing down formula (4d.1) and providing the

right reasoning accompanying it. Give the students 0.5 points for picking a suitable vector ~b and
a further 1 point for finding what the eigenvecctor associated with the eigenvalue 3 is. Finally,

give them 1 point for writing down formula (4d.2) correctly. All in all, 1 + 0.5 + 1 + 1 = 3.5
points.
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Aufgabe 6. Prof. Zibrowius’s Signature “Clever Question.”

Note to markers: Seeing this is the signature “clever question,” it is far from unlikely that

correct answers given by the students will di↵er from the ones given here.

(a) The elements of the basis B⇤, are defined as

b
⇤
i : V ! K, b

⇤
j 7!

(
1, i = j,

0, i 6= j.

Note to markers: Award the students 1 points for knowing this.

(b) A basis of V ⇤ ⌦W ⇤ may be given by the vectors (b⇤
1 ⌦ c

⇤
1,b

⇤
1 ⌦ c

⇤
2, . . . ,b

⇤
n ⌦ c

⇤
m).

A basis of V ⌦ W may be given by the vectors (b1 ⌦ c1,b1 ⌦ c2, . . . ,bn ⌦ cm). A basis of
(V ⌦W )⇤ may then by given by ((b1⌦ c1)⇤, (b1⌦ c2)⇤, . . . , (bn⌦ cm)⇤), where (bi⌦ cj)⇤ is the
map V ⌦W ! K which sends bk ⌦ c` to 1 if k = i and ` = j, and to zero otherwise.

Note to markers: Award the students 1 points for getting the basis of V ⇤ ⌦W ⇤
right, and 1

point for getting the basis of (V ⌦W )⇤ right. All in all, 1 + 1 = 2 points.

(c) It is readily apparent that the mapping f : V ⇥W ! K defined by v⇥w 7! '(v) ·  (w) is
bilinear. Specifically, in as far as V is concerned, we have

f(kv,w) = '(kv) (w) = k'(v) (w) = kf(v,w),

and

f(v1 + v2,w) = '(v1 + v2) (w) = '(v1) (w) + '(v2) (w) = f(v1,w) + f(v2,w),

and by symmetry we have the same a↵air withW . We also of course have the canonical mapping
g : V ⇥W ! V ⌦W defined by v ⇥w 7! v ⌦w. Hence, by Satz 17.6, there exists a unique
linear map L', : V ⌦W ! K such that v ⌦w 7! '(v) ·  (w).

V ⇥W V ⌦W

K

g

f 9!L', 

Note to markers: Award the students 3.5 points for getting this correct.

(d) We define a linear map h : V ⇤ ⌦W ⇤ ! (V ⌦W )⇤ by '⌦  7! L', .

To see that it is isomorphic, consider how it maps basis vectors of V ⇤ ⌦ W ⇤ to basis vectors
of (V ⌦ W )⇤, these being, as established in (b), the sets (b⇤

1 ⌦ c
⇤
1,b

⇤
1 ⌦ c

⇤
2, . . . ,b

⇤
n ⌦ c

⇤
m) and

((b1 ⌦ c1)⇤, (b1 ⌦ c2)⇤, . . . , (bn ⌦ cm)⇤) respectively.

The basis vector b⇤
i ⌦ c

⇤
j of V ⇤ ⌦W ⇤ maps to Lb⇤

i ,c
⇤
j
in (V ⌦W )⇤, this being, as established in

(c), the unique map V ⌦W ! K such that v ⌦w 7! b
⇤
i (v)c

⇤
j (w). Seeing that this is the map
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which sends bk ⌦ c` to 1 if k = i and ` = j, then as noted in (b), Lb⇤
i ,c

⇤
j
= (bi ⌦ cj)⇤, a basis

vector of (V ⌦W )⇤.

This establishes that h maps the basis vectors of V ⇤ ⌦W ⇤ to the basis vectors of (V ⌦W )⇤ in
a one-to-one fashion. Seeing further that V ⇤ ⌦W ⇤ has nm basis vectors, as does (V ⌦W )⇤, it
follows that the mapping is also onto, establishing h as an isomorphism.

Note to markers: Award the students 3.5 points for getting this correct..

That completes the examination.


